Svenska Engelska
We have expert knowlegde in motor drives

Motor drives and frequency converters

EK Power DrivesTM is our new trademark for custom designed electrical motor drives. We have designed high-efficient motor drives with cutting edge technologies since 2003. Our proven custom drive solutions are used worldwide and are appreciated for their high quality and reliability.

We have designed control systems for all types of electric motors. This includes permanent magnet (PM) motors, brushless motors, stepper motors, and both AC induction- and DC-motors.

Our list of designs includes AC mains single- or three phase connected systems to battery driven applications. Typical power levels are up to 50 kW or even above.

By combining latest advancements in power semiconductor technology (SiC and GaN), PCB design and thermal dissipation, we can provide high power drives with minimum footprint. Our designs offer advanced algorithms and hardware protections that enable a highly efficient regeneration of power, in battery systems protecting the batteries from current peaks and overvoltage’s.

Our strength is to design robust products for harsh environments. High quality and reliability requirements are our everyday lives. We always look for the best overall system solution. In our design we focus on high efficiency to reduce losses and maximize battery life if connected to such systems. Size and weight also play an important role in having a more compact solution that can better fit into the system mechanics.

In our 300 sqm electronics lab we have breaking benches to measure motor performance, all with the aim of securing the product quality and reliability.

Our motor drives typically have the following functions:

Typical hardware functions

  • Single- or three phase PFC (1P Standard, 1P Semi-bridgeless, Bi-directional 3P Two level or 3P Vienna)
  • Two level 3P motor inverter is standard, but three level to be implemented in the future.
  • EMC filter
  • Regenerative braking and/or brake resistor
  • HW mains fault detection
  • 2 channel STO (Safe Torque Off) in hardware
  • Hardware I/O fault and fault warning signals
  • Transformer isolated Ethernet or EtherCat (Safety)
  • Isolated CAN (Safety)
  • Encoder HW interfaces (HTL/TTL Incremental and Hall-sensor)
  • Back-up/log memory (FRAM and/or QSPI PSRAM
  • Micro SD-card (“Black box” memory and possible SW update channel)
  • PWM FAN control (temperature controlled from SW) of up to two fans with tacho feedbacks.
  • Internal/external 24V power supply with safety isolation

Typical software functions

  • Speed control with adaptive acceleration.
  • Automatic field weakening for increased top-speed of motors.
  • High speed logging of motor-control data.
  • Automatic on-target calculation of FOC-control parameters using the motor (electrical/mechanical) parameters.
  • Automatic measurement of motor winding-temperature with or without use of temperature sensors.
  • SPWM or SVPWM-mode available for open-loop control/testing of motors and drive.
  • Measurement (RMS) and monitoring of VAC-current.
  • Continuous measuring of the consumed (accumulated) energy to maximize performance while avoiding tripping the fuse.
  • Control/feedback using SPI and SDO/PDO.
  • Re-flash of SW using bootloader over SPI.
  • Communication over Ethernet, EtherCAT, CANopen according to CiA 402.
  • Encoders (HTL/TTL Incremental and Hall-sensor)
  • To maximize cooling performance without unnecessary audible noise. Fan failure detection from hardware.
  • Automatic adjustment of fan-speed depending on device temperature.

Typical safety standards

  • EN 61010-1
  • EN 60335-1
  • EN 60745 / EN 62841
  • IEC 61800
  • ISO 13849 Functional safety / IEC 61508
  • IEC 60204

Typical communication protocols

Serial Peripheral Interface (SPI) is a communication protocol used for high-speed serial communication between one master controller and one or more slave devices. Its configuration allows for multi-axis architectures, which combined with its easy implementation results in faster system design while still maintaining performance and very low latency. Its application for motion control servo systems leads to getting the best of both centralized and distributed multi-axis architectures.

Ethernet for Control of Automation Technology, often referred as EtherCAT is a standardized Ethernet-based fieldbus system developed by Beckhoff Automation. EtherCAT use the fastest industrial Ethernet Technology and synchronize with nanosecond accuracy. This reduces the wait times between process steps, increases application efficiency, and provide the best fit for distributed control in high performance applications.

CANopen is a CAN-based communication system. It comprises higher-layer protocols and profile specifications. CANopen has been developed as a standardized embedded network with highly flexible configuration capabilities. It was designed originally for motion-oriented machine control systems. Today it is used in various application fields, such as medical equipment, off-road vehicles, maritime electronics, railway applications, or building automation.

Why a custom design solution?

There are a few main reasons for our customers to go for a custom designed motor drive. They need a drive that have:

  • a specific shape or form factor.
  • a specific functionality not available in off-the-shelf drives.
  • a drive optimized for their application.
  • reduce costs for higher production volumes.

The benefit is also that we on a custom design drive solution can incorporate your functional needs or e.g. custom designed power supply to support external functions.

If your product requires a high quality and reliable custom designed electrical motor drive, do not hesitate to contact us.

Contact us

Per Jennel

Sales Manager
+46 (0)8 446 56 10
Email me »

Henrik Sennerö

Development Manager
+46 (0)8 446 56 16
Email me »

Certificats & Memberships

Copyright 2015 EK Power Solutions AB - Brandson AB - Webbyrå Stockholm - Sitemap